非接触データキャリア

発明の背景

1．発明の属する技術分野

本発明は，各種商品に取り付けられ，I D 番号や商品の特性を記憶することに より，商品管理や工程管理に用いられ，電磁誘導方式により電気的接点不要で質問器と通信を行う非接触データキャリアに関する。

2．関連技術の説明

近年，薄型化や小型化のため必要な回路をI Cチップに集積してタグあるいは I Cカードに内蔵し，電磁誘導結合等を利用して電源の授受やデータの送受信を電気的な接点無しで行う非接触データキャリアが開発されている。例えば，非接触データキャリアは，記憶容量の大きさと高度なセキュリティ機能を有するとい う特徵に加え，タグあるいはICカード自身をリーダライタのアンテナ部に近づ けたり，スロットに挿入するだけで，通信ができるという特徵を有するために，接点等の機構部が不要でメンテナンスフリーとなり，商品管理や工程管理あるい は機器内で使用するリムーバブルな部品に取り付けて部品の管理や部品を最適な条件で使用することが可能になる。このような非接触データキャリアは，電波等 の媒体を用いてリーダライタとしての質問器との間で情報の授受を行うものであ り，非接触データキャリアの制御回路やメモリ部の動作に必要な電力は，質問器 から送出された電波により非接触データキャリア内に設けられたコイルに電磁誘導作用で発生する誘起電流を整流することにより得ている。

以下，図7を参照して従来の非接触データキャリアの構造について説明する。
図 7 に示すように，従来の非接触データキャリアは，樹脂ケース 1 と薄板状の樹脂ケース 5 内に，回路基板 3 上に設けられた集積回路 4 とアンテナコイル 2 と からなる電子回路モジュールが備えられた構造のものである。集積回路4はダイ オード回路，復調回路，電源回路，変調回路，メモリおよび制御回路を含むもの である。

アンテナコイル 2 は，銅線を矩形状あるいは円形状に複数回巻くことにより作製され，質問器（図示せず）との間で通信制御を行うための集積回路4は，回路

基板 3 上にボンディングされ，回路基板 3 上でアンテナコイル 2 と電気的接続が されている。なお，図7においては，アンテナコイル 2 は，コイルが束状になっ た概略図を表している。

従来，非接触データキャリアの樹脂ケース1の形成は，通常成型樹脂を射出成型することにより行う。これは，薄板状の樹脂ケース 5 上に集積回路 4 が実装さ れた回路基板 3 およびアンテナコイル 2 を設置し，この樹脂ケース 5 を成型用金型のキャビティ内に挿入した後，樹脂を金型内に注入するインジェクション成型 により行うものである。

この時，樹脂ケース 1 は，非接触データキャリアの一部として，パッケージ成型されることになる。また，金型内に成型用樹脂が注入される際に，樹脂の圧力 によるずれを防止するために，上記アンテナコイル 2 および回路基板 3 は薄板状 の桔脂ケース 5 に貼りつけ等により固定されることもある。

しかしながら，従来のインジェクションによる製造方法は，成型段階において ，集積回路 4，回路基板 3 およびアンテナコイル 2 を成型用樹脂の高温高圧にさ らしてしまうことで，集積回路 4 の割れや，アンテナコイル 2 の断線といった不具合が発生することがあった。

また，薄板状の樹脂ケース 5 と樹脂ケース 1 の間に，ピンホール無く成型する ことが困難であった。ピンホールが電子回路モジュールのアンテナ 2 や集積回路 4 に接すると，静電耐圧特性を安定して確保することができないという問題があ った。

発明の要約

本発明は，上述の課題を解決するものであり，非接触データキャリアの成型時 に内部を高温，高圧にさらすことがなく，また，静電耐圧特性に優れた非接触デ ータキャリアの提供を目的とする。

上記課題を解決するために，本発明の非接触データキャリアは，アンテナコイ ルおよび集積回路を電気的に接続した電子回路モジュールが，第一のスリットを設けた中空の樹脂ケースに内藏されたものである。

これにより，中空の樹脂ケース内に電子回路モジュールを内蔵しているので，

非接触データキャリアの形成時に，集積回路及びアンテナコイルをインジェクシ ョン成型時のように高温高圧にさらすことが無くなるので，集積回路の割れやア ンテナコイルの断線と言う不具合を防止することができる。また，樹脂ケース内 の中空部に通ずる第1のスリットを設けているので，高温時に樹脂ケース内の空気圧の上异により樹脂ケースが膨らむことにより，樹脂ケースの外面とリーダラ イタのアンテナコイルとの位置合わせ精度が低下して，通信特性が劣化するとい う問題の発生を防止できる。また，中空の樹脂ケースにスリットを設けているの で，ケース内の圧力が上がらないため，樹脂ケース融着時にピンホールができに くく，静電耐圧特性が改善される。

また，上記本発明の非接触データキャリアにおいて，更に，前記電子回路モジ ユールと前記第一のスリットの間に遮蔽板が設けられ，前記遮蔽板に第二のスリ ットが設けられることが好ましい。

これにより，第一のスリットから電子回路モジュールまでの沿面距離を大きく することができるので，静電耐圧性能を更に向上させることができる。

また，上記本発明の非接触データキャリアにおいて，さらに，アンテナコイル および集積回路が同一基板上に設けられることが好ましい。

これにより，アンテナコイル，集積回路および基板が一体となった電子回路モ ジュールを構成でき，樹脂ケースに固定しやすくすることができる。

また，上記本発明の非接触データキャリアにおいて，さらに，樹脂ケースが，第一の部品および第二の部品を接合させることにより形成され，第一のスリット が前記第一の部品および前記第二の部品の接合する部分に設けられていることが好ましい。

これにより，第一の部品あるいは第二の部品に予め切り込み凹部を形成させて おくことで，容易に第一のスリットを樹脂ケースに設けることができる。

また，上記本発明の非接触データキャリアにおいて，さらに，電子回路モジュ ールが，前記樹脂ケース内の一つの面に寄せて配置され，前記樹脂ケース内の前記一つの面とは対向する面に第一のスリットが設けられていることが好ましい。

これにより，第一のスリットの位置を電子回路モジュールより遠ざけることが できるので，静電耐圧特性をよくすることができる。

また，上記本発明の非接触データキャリアにおいて，さらに，前記電子回路モ ジュールと前記第1スリットとの間に遮蔽板が複数個設けられ，前記遮蔽板のそ れぞれにスリットが設けられていることが好ましい。

これにより，第一のスリットからアンテナコイルまでの沿面距離を大きくする ことができるので，静電耐圧特性を改善することができる。

図面の簡単な説明
図1は，本発明における第1の実施形態の非接触データキャリアの一部切り欠 き斜視図である。

図 2 は，本発明における第 1 の実施形態の電子回路モジュールの構成図である
。
図 3 は，本発明における第 1 の実施形態の電子回路モジュールの配置図である。

図 4 A ，図 4 B は，本発明における第 2 の実施形態の遮蔽板を設けた非接触デ ータキャリアを示した図であり，図 4 A は側面断面図，図 4 B は平面断面図であ る。

図 5 A ，図 5 B は，本発明における第2の実施形態のスリットの位置が互いに異なる遮蔽板を設けた非接触データキャリアを示した図であり，図5Aは側面断面図，図5 Bは平面断面図である。

図 6 は，本発明における第 2 の実施形態の複数の遮蔽板を設けた非接触データ キャリアの側面断面図である。

図 7 は，従来の非接触データキャリアの一部切り欠き斜視図である。

発明の詳細な説明
以下，本発明の非接触データキャリアにおける実施の形態について，図面を用 いて詳細に説明する。
（実施の形態1）
図1は，本発明における第1の実施形態の非接触データキャリアの一部切り欠 き斜視図を示す。

図1に示すように，非接触データキャリアは，枅形の第一の部品 6 a と側面に切り込まれた凹部が設けられた枡形の第二の部品 6 b とから構成される樹脂ケー ス 6 の中空内に，回路配線を表面に形成できる回路基板 8 上に設けられた集積回路 9 とアンテナコイル 7 とからなる電子回路モジュールが備えられている。第一 の部品 6 a と第二の部品 6 b とが接合した樹脂ケース 6 の一つの側面には，第二 の部品 6 b に設けられた上記凹部によって，中空部に通じる第一のスリット10 が設けられている。なお，集積回路 9 はダイオード回路，復調回路，電源回路，変調回路，メモリおよび制御回路を含むものである。

また，従来同様にアンテナコイル 7 は，銅線を矩形状あるいは円形状に複数回巻くことにより作製されており，質問器（図示せず）との間で通信制御を行うた めの集積回路 9 は，回路基板 8 上にボンディングされており，アンテナコイル 7 と集積回路 9 は回路基板 8 上で金属配線（図示せず）を介して電気的接続がされ ている。

また，図 1 において，アンテナコイル7 は，コイルが束状になったものを表し ている。

なお，図1では，第一の部品 6 a と接合する第二の部品 6 b の側面の上端辺に溝状の切り込まれた凹部を設けることにより，第一のスリット 1 0 を形成してい るが，本発明はこのような構成に限定されない。例えば，第一の部品 6 a および第二の部品 6 b のそれぞれの側面の対向する位置に切り込まれた凹部を設けて，第一のスリット10を設けてもよい。

また，第二の部品 6 b に切り込み凹部を設けず，第一の部品 6 a にのみ切り込 み凹部を設けて，第一のスリット 10 を設けてもよい。

次に，本発明の非接触データキャリアの製造工程を示す。
まず，樹脂ケース 6 の凹部が設けられた第二の部品 6 b の底面上に，集積回路 9 が設けられた回路基板 8 とアンテナコイル 7 とからなる電子回路モジュールを配置し，電子回路モジュールを，第二の部品 6 b に接着して固定する。

次に，第一の部品 6 a の 4 つの側面と第二の部品 6 b の 4 つの側面とを当接さ せて，これらを超音波溶着等の方法で接着する。かくして，第一の部品 6 a と第二の部品 6 b とが接合した樹脂ケース 6 の一つの側面に矩形状の第一のスリット

10 が形成され，これにより樹脂ケース 6 の内部と外部が空間的につながった状態になる。これにより，中空の樹脂ケース 6 内に電子回路モジュールを内蔵させ る構造となる。

第一のスリット10を設けることにより，例えば，温度上昇による内部の空気圧が高まって，樹脂ケース 6 を膨らませることがなくなる。なお，樹脂ケース 6 が膨らんでいると，樹脂ケース 6 の外面で位置あわせをして機器に密着して使用 する場合，膨らみがある部分だけ樹脂ケース 6 の外面とアンテナコイル 7 との位置が変わり，通信特性が劣化する。

また，高まった空気圧により樹脂ケース 6 にゆがみを生じて，内部のアンテナ コイル 7 の断線や，集積回路 9 の割れを引き起こすこともなくなる。

また，アンテナコイル 7 と回路基板 8 とを直接第二の部品 6 b の凹部上に配置 するのではなく，図2に示すように，回路基板11の表面にアンテナコイル 7 を パターニングにより形成し，その回路基板 1 1 の上に集積回路 9 を設け，アンテ ナコイル 7 と集積回路 9 を金属配線（図示せず）を介して回路基板 11 上で，電気的に接続した電子回路モジュール 12 を用いると，第二の部品 6 b に配置しや すくなる。

ところで，第一のスリット10を設けることにより，静電気が電子回路モジュ ール 12 に入り込む可能性があるが，図 3 に示すように，電子回路モジュール 1 2を第一のスリット10から遠くなるように樹脂ケース 6 の第一のスリット 10 が設けられた面とは反対の面に寄せた位置に配置させることにより，第一のスリ ット 10 から電子回路モジュール 12 に至る沿面距離を大きくして，静電耐圧性能を向上させることができる。

なお，沿面距離が同一でも第一のスリット 10 の大きさによって静電耐圧性能 が変化する。

ここで，非接触データキャリアの寸法を，横が 30 mm ，縦が 15 mm ，高さ が 4 mm とした場合，この非接触データキャリアをアースに接続した金属上に置 いて静電気をかけたとき，矩形状の第一のスリット10の寸法を，横が 5 mm ，縦が 0.2 mm 程度の大きさにすることにより， 30 kV の静電耐圧を得ること ができた。

また，矩形状の第一のスリット10の寸法を，横が 2 mm ，縦が 0.2 mm 程度の大きさでも，樹脂ケース 1 内の空気圧の調整ができ，高温に放置しても樹脂 ケース 6 が膨らむことはないので，さらに静電耐圧を向上させることができた。

なお，第一のスリット10の正面から見た形状は，矩形状に限らず，楕円，円 などの形状でもかまわない。要するに，その大きさが，高温にさらしても樹脂ケ ース6が膨らまない程度の大きさであればよい。
（実施の形態2）
図 4 A ，図 4 B に，本発明における第 2 の実施形態の非接触データキャリアの断面図を示す。

図 4 A は，非接触データキャリアの側断面図を示し，図 4 B は，非接触データ キャリアの上断面図を示している。

図 4 A および図 4 B に示すように，この構造は，図 3 に示した樹脂ケース 6 内 に第二のスリット14を設けた樹脂からなる遮蔽板 1 3 を設けることにより，第一の部品 6 a と第二の部品 6 b との接合部に設けられた第一のスリット 10 と回路基板 11 上にアンテナコイル 7 と集積回路 9 が形成された電子回路モジュール 12 との間に空間領域を設けたものである。なお，16は集積回路 9 を回路基板 11 上でアンテナコイル 7 と接続するための金属配線である。第二のスリット 1 4 は，遮蔽板 13 の先端の辺の一部に，第一のスリット 10 を設ける場合と同様 の切り込まれた凹部を形成することで設けられている。

なお，図 4 A ，図 4 B では，遮蔽板 13 は第二の部品 6 b と一体に形成されて いるが，第一の部品 6 a と一体に形成しても良い。また，遮蔽板 13 の先端に凹部を形成することで第二のスリット14を形成するのではなく，図4Aにおいて遮蔽板 13 の上下方向の中央部近傍に貫通孔を形成して第二のスリット 14 とし ても良い。遮蔽板 13 を，第一の部品 6 a および第二の部品 6 b と同一の樹脂で形成し，第一の部品 6 a あるいは第二の部品 6 b と同時の工程で設けておくと，工程が簡単になる。

この遮蔽板 13 によって，樹脂ケース 6 内の，上部，下部あるいは遮蔽板 13 の途中に第二のスリット14が設けられ（図では上部に第二のスリット14を作製），電子回路モジュール12が内蔵されている中空部分は，第二のスリット1

4 および第一のスリット 10 を通して，外部と通じている。
これにより，遮蔽板 13 によって静電気の沿面距離が増加し，静電耐圧特性を改善することができる。

次に，非接触データキャリアの側断面図を表す図5Aに示すように，樹脂ケー ス 6 の第一の部品 6 a と第二の部品 6 b の両方の対向する位置にそれぞれ遮蔽板 13 を立設し，両遮蔽板 13 のうちの一方又は双方の先端の辺に切り込み凹部を設けておいて，切り込み凹部以外の両遮蔽板 1 3 の先端の辺を当接させて，第一 の部品 6 a と第二の部品 6 b を超音波溶着して，第一のスリット 10 と同様に，第二のスリット 14 を作製してもよい。

このとき，非接触データキャリアの上断面図を表す図5Bに示すように，第二 のスリット14の位置と第一のスリット10の位置を上方向から見てずらす位置 に（両スリットが対向しないように）配置することにより，図4 A の場合と同様 に，沿面距離が増加し，静電耐圧特性を改善することができる。

なお，図 5 B では，第一のスリット 10 と第二のスリット 14 の位置を水平方向にだけずらせているが，さらに垂直方向にもずらすことにより沿面距離をさら に大きくすることができる。

また，図 6 に示すように，第一のスリット 10 と電子回路モジュールとの間に ，第二のスリット14と第三のスリット15をそれぞれ設けた遮蔽板13aと1 3 b を 2 つ設けると，さらに，沿面距離を増加させることができる。ここで，第三のスリット15は第二のスリット14と同様の方法で遮蔽板 13 b に形成され ている。

なお，図 6 においては，遮蔽板が 2 枚の場合を示したが，使用される状況に応 じて，遮蔽板を追加してもよい。この場合，各遮蔽板にスリットが設けられ，上述のように，各スリットの配置の仕方は第一のスリット10と電子回路モジュー ルとの間の沿面距離を考慮して種々に設定するすることができる。

以上に説明した実施の形態は，いずれもあくまでも本発明の技術的内容を明ら かにする意図のものであって，本発明はこのような具体例にのみ限定して解釈さ れるものではなく，その発明の精神と請求の範囲に記載する範囲内でいろいろと変更して実施することができ，本発明を広義に解釈すべきである。

請求の範囲

1．アンテナコイルおよび集積回路を電気的に接続した電子回路モジュールが ，第一のスリットを設けた中空の樹脂ケースに内蔵された非接触データキャリア

2．更に，前記電子回路モジュールと前記第一のスリットの間に遮蔽板が設け られ，前記遮蔽板に第二のスリットが設けられた請求項1に記載の非接触データ キャリア。

3．アンテナコイルおよび集積回路が同一基板上に設けられた請求項 1 に記載 の非接触データキャリア。

4．樹脂ケースが，第一の部品および第二の部品を接合させることにより形成 され，第一のスリットが前記第一の部品および前記第二の部品の接合する部分に設けられている請求項1に記載の非接触データキャリア。

5．前記電子回路モジュールが，前記樹脂ケース内の一つの面に寄せて配置さ れ，前記樹脂ケース内の前記一つの面とは対向する面に前記第一のスリットが設 けられた請求項 1 に記載の非接触データキャリア。

6．前記電子回路モジュールと前記第1スリットとの間に遮蔽板が複数個設け られ，前記遮蔽板のそれぞれにスリットが設けられた請求項1に記載の非接触デ ータキャリア。

要約

第一の部品と第二の部品とから構成される中空の樹脂ケース内に，アンテナコ イルと回路基板上に設けられた集積回路とからなる電子回路モジュールを設ける。第一の部品と第二の部品とが接合した樹脂ケースの一つの側面に中空部に通じ た第一のスリットを設ける。製造工程で電子回路モジュールが高温高圧にさらさ れることがないので，集積回路の割れやアンテナコイルの断線と言う不具合の発生を防止できる。中空部に通じるスリットを設けているので，温度上昇によって中空部が膨張することもない。更に，第一の部品と第二の部品との接合時にピン ホールが形成されにくく，静電耐圧特性に優れた非接触データキャリアを提供で きる。

